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9-2 Faraday’s Law of Induction 
 

Reading Assignment:  pp. 277-286 
 
Now let’s consider time-varying fields! 
 
Specifically, we consider what occurs when a magnetic 
flux density is not a constant with time (i.e., ( )r ,tB ). 
 

 Maxwell’s Equations “recouple”, so that the electric 
field and magnetic flux density are related. 
 
Specifically, a time varying magnetic field is the source 
of a new, solenoidal electric field! 
 
HO: Faraday’s Law 
 
9-2-1  Time-Varying Fields in Stationary 
Circuits 
 
Faraday’s Law is the basis for electric power 
generators! 
 
HO: The Electromotive Force 
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Faraday’s Law is likewise the basis for the operation of 
transformers! 
 
HO: The Ideal Transformer 
 
HO: Eddy Currents 
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Faraday’s Law of Induction 
 
Say instead of a static magnetic flux density, we consider a 
time-varying B field (i.e., ( )r ,tB ).  Recall that one of Maxwell’s 
equations is: 

( ) ( )x r ,tr
t

∂
∇ = −

∂
BE  

 
Yikes! The curl of the electric field is therefore not zero if the 
magnetic flux density is time-varying! 
 
If the magnetic flux density is changing with time, the electric 
field will not be conservative! 
 

Q: What the heck does this equation mean ?!? 
 
A: Integrate both sides over some surface S: 
 

( ) ( )x
S S

r ds r ,t ds
t
∂

∇ ⋅ = − ⋅
∂∫∫ ∫∫E B  

 
Applying Stoke’s Theorem, we get: 
 
 

( ) ( )
C S

r d r ,t ds
t
∂

⋅ = − ⋅
∂∫ ∫∫E B  

 
 

where C is the contour that surrounds the boundary of S.
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 Note that ( ) 0
C

r d⋅ ≠∫ E . 

 
This equation is called Faraday’s Law of Induction. 
 

Q:  Again, what does this mean? 
 
A:  It means that a time varying magnetic flux density 

( )r ,tB  can induce an electric field (and thus an 
electric potential difference)! 

 
Faraday’s Law describes the behavior of such devices such as 
generators, inductors, and transformers ! 

 
 

 
 

 

Michael Faraday (1791-
1867), an English chemist 
and physicist, is shown 
here in an early 
daguerreotype holding a 
bar of glass he used in his 
1845 experiments on the 
effects of a magnetic 
field on polarized light. 
Faraday is considered by 
many scientists to be the 
greatest experimentalist 
ever!  (from “Famous Physicists and 
Astronomers” 
www.phy.hr/~dpaar/fizicari/index.html) 
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The Electromotive Force 
 
Consider a wire loop with surface area S, connected to a single 
resistor R. 
 
 
 
 
 
 
 
 
 
 
Since there is no voltage or current source in this circuit, both 
voltage v and current i are zero. 
 
Now consider the case where there is a time-varying magnetic 
flux density ( )r ,tB  within the loop only.  In other words, the 
magnetic flux density outside the loop is zero (i.e., ( ) 0r ,t =B  
outside of S). 
 
Say that this magnetic flux density is a constant with respect 
to position, and points in the direction normal to the surface  S.  
In other words; 
 

( ) ( ) n̂r ,t B t a=B  

S 

+ 
v  
-  

i  

R 



12/3/2004 The Electromotive Force 2/4 

Jim Stiles The Univ. of Kansas Dept. of EECS 

 
 
 

 
 
 
 
 
 
 
 
 

According to Faraday’s Law: 
 

( ) ( )

( ) ( )

( ) ( ) ( )

C S

n
C S

b a

a b S

r d r ,t ds
t

ˆr d B t a ds
t
B tr d r d ds

t

∂
⋅ = − ⋅

∂
∂

⋅ = − ⋅
∂

∂
⋅ + ⋅ = −

∂

∫ ∫∫

∫ ∫∫

∫ ∫ ∫∫

E B

E

E E

 

 
The contour from point a to point b is along a wire, which we 
presume to be a perfect conductor.  Since the electric field 
within a perfect conductor is equal to zero, we find: 
 

( ) 0
b

a
r d⋅ =∫E  

S 

+ 
v  
-  

i  

R 

( ) ( )B n̂r ,t t a=B  

C 

a 

b 
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Likewise, if we integrate through the resistor from point b to 
point a, we find: 
 

( ) ( )
a b

b a
r d r d v⋅ = − ⋅ = −∫ ∫E E  

 
Finally, we note that: 

S
ds S=∫∫  

 
where S is the surface area of the loop. 
 
Combining these results, we find: 
 

( )B tv S
t

∂
=

∂
 

 
Or, recalling that magnetic flux Φ  is defined as: 
 

( ) ( )
S

r ,t ds t⋅ = Φ∫∫B  

 
we can write: 
 

( )

( )

B tv S
t

t
t

∂
=

∂
∂Φ

=
∂
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For this case, the voltage across the resistor is proportional to 
the time derivative of the total magnetic flux passing through  
the aperture formed by contour C. 
 
Using the circuit form of Ohm’s Law, we likewise find that the 
current in the circuit is: 
 

( )

( )1

vi
R

B tS
R t

t
R t

=

∂
=

∂
∂Φ

=
∂

 

 
In other words,  time-varying magnetic flux density can induce a 
voltage and current in a circuit, even though there are no 
voltage or current sources present! 
 
The voltage created is known as the electromotive force. 
 
The electromotive force is the basic phenomenon behind the 
behavior of: 
 
 1.  Electric power generators 
  
 2.  Transformers 
  
 3.  Inductors 
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The Ideal Transformer 
 
Consider the structure: 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
*  The “doughnut” is a ring made of magnetic material with very 
large relative permeability (i.e., 1rµ >> ). 
 
*  On one side of the ring is a coil of wire with N1 turns. This 
could of wire forms a solenoid! 
 
*  On the other side of the ring is another solenoid, consisting 
of a coil of N2 turns. 
 

This structure is an ideal transformer ! 

µ  

+ 
_ ( )1v t  ( )2v t

+

−
 1N  2N  

( )1i t  

LR  

( )2i t  
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*  The solenoid on the left is the primary loop, where the one 
on the right is called the secondary loop. 
 
The current  i1(t) in the primary generates a magnetic flux 
density ( )r ,tB .  Recall for a solenoid, this flux density is 
approximately constant across the solenoid cross-section (i.e., 
with respect to r ).  Therefore, we find that the magnetic flux 
density within the solenoid can be written as: 
 

( ) ( )r ,t t=B B  
 

It turns out, since the permeability of the ring is very large, 
then this flux density will be contained almost entirely within 
the magnetic ring.  
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 
_ ( )1v t  ( )2v t

+

−
 

( )tB  

( )1i t  
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Therefore, we find that the magnetic flux density in the 
secondary solenoid is equal to that produced in the primary! 
 

Q:  Does this mean also that ( ) ( )1 2v t v t= ? 
 
A:  Let’s apply Faraday’s Law and find out! 

 
Applying Faraday’s Law to the primary loop, defined as contour 
C1, we get: 

( ) ( )
1 1C S

r d r ,t ds
t
∂

⋅ = − ⋅
∂∫ ∫∫E B  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

+ 
_ ( )1v t  ( )2v t

+

−
 

( )tB  

1C  

( )1i t  
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Q:  But, contour C1 follows the wire of the solenoid.  What 
the heck then is surface S1 ?? 
 
A:    S1 is the surface of a spiral! 
 

We can approximate the surface area of a spiral by first 
considering the surface area formed by a single loop of wire, 
denoted S0.  The surface area of a spiral of N turns is 
therefore approximately N S0.  Thus, we say: 
 

( ) ( )
1 0

1
S S

t ds N t ds⋅ = ⋅∫∫ ∫∫B B  

 
Likewise, we find that by integrating around contour C1: 
 

( ) ( )
1

1
C

r d v t− ⋅ =∫ E  

 
Faraday’s Law therefore becomes: 
 

( ) ( )

( )
0

1 1

1

S
v t N t ds

t
tN

t

∂
= ⋅

∂

∂Φ
=

∂

∫∫B
 

 
where ( )tΦ  is the total magnetic flux flowing through the 
solenoid: 

( ) ( )
0S

t t dsΦ = ⋅∫∫B  
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Remember, this same magnetic flux is flowing through the 
secondary solenoid as well.  Faraday’s Law for this solenoid is: 
 

( ) ( )
2 2C S

r d r ,t ds
t
∂

⋅ = − ⋅
∂∫ ∫∫E B  

 
where we similarly find that: 
 

( ) ( )
2

2
C

r d v t− ⋅ =∫ E  

and: 
 

( ) ( )

( )
2 0

2

2

S S
r ,t ds N r ,t ds

t t
tN

t

∂ ∂
⋅ = ⋅

∂ ∂

∂Φ
=

∂

∫∫ ∫∫B B
 

 
therefore we find that : 
 

( ) ( )
2 2

tv t N
t

∂Φ
=

∂
 

 
Combining this with our expression for the primary, we get: 
 

( ) ( ) ( )1 2

1 2

t v t v t
t N N

∂Φ
= =

∂
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As a result, we find that the voltage ( )2v t  across the load 
resistor LR  is related to the voltage source ( )1v t  as: 
 
 

( ) ( )2
2 1

1

Nv t v t
N

=  

 
 
Note that by changing the number of the ratio of windings N in 
each solenoid, a transformer can be constructed such that the 
output voltage ( )2v t  is either much greater than the input 
voltage ( )1v t (i.e., 2 1 1N N >> ), or much less than the input 
voltage (i.e., 2 1 1N N << ). 
 
We call the first case a step-up transformer, and the later 
case a step-down transformer. 
 

Q:  How are the currents ( )1i t  and ( )2i t  related ?? 
 
A:  Energy must be conserved! 
 

Since a transformer is a passive device, it cannot create energy.  
We can state therefore that the power absorbed by the 
resistor must be equal to the power delivered by the voltage 
source.   
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In other words: 
 

( ) ( ) ( ) ( )1 1 2 2Power v t i t v t i t= = −  
 

The minus sign in the above expression comes from the 
definition of ( )2i t , which is pointing into the transformer (as 
opposed to pointing into the resistor). 
 
Rearranging the above expression, we find: 
 
 

( ) ( )
( )

( )

( )

1
2 1

2

1
1

2

v ti t i t
v t
N i t
N

= −

= −
 

 
 
Note that for a step-up transformer, the output current ( )2i t  
is actually less than that of ( )1i t , whereas for the step-down 
transformer the opposite is true. 
 
Thus, if the voltage is increased, the current is decreased 
proportionally—energy is conserved! 
 
Finally, we note that the primary of the transformer has the 
apparent resistance of: 

( )
2

1 1 2 2 1 1 1
1

1 2 2 1 2 2 2
L L

v v v i N N NR R R
i v i i N N N

⎛ ⎞−
= = − = ⎜ ⎟

⎝ ⎠
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Thus, we find that for a step-up transformer, the primary 
resistance is much greater than that of the load resistance 
on the secondary.  Conversely, a step-down transformer will 
exhibit a primary resistance R1 that is much smaller than that 
of the load. 
 
One more important note!  We applied conservation of energy 
to this problem because a transformer is a passive device.  
Unlike an active device (e.g., current or voltage source) it cannot 
add energy to the system . 
 
However, passive devices can certainly extract energy from the 
system!  
 

Q:  How can they do this? 
 
A:   They can convert electromagnetic energy to heat ! 

 
If the “doughnut” is lossy (i.e., conductive), electric currents 
( )rJ  can be induced in the magnetic material.  The result are 

ohmic losses, which is power delivered to some volume V (e.g., 
the doughnut) and then converted to heat.  This loss can be 
determined from Joule’s Law: 
 

( ) [ ]2r         Wloss
V

P dvσ= ∫∫∫ E  

In this case, the transformer is non-ideal, and the expressions 
derived in this handout are only approximate. 
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Eddy Currents 
 
From Faraday’s Law, we know that a time-varying magnetic flux 
density ( )tB  will induce electric fields ( )r ,tE . Consider what 
happens if this time-varying magnetic flux density occurs within 
some material, say the magnetic core of some solenoid. 
 
 
 
 
 
 
 
 
 
 
 
 
If the material is non-conducting (i.e., 0σ = ), then these 
induced electric fields essentially cause no problems.  But 
consider what happens if the material is conducting.  In this 
case, we apply Ohm’s Law and find that current ( )rJ  is the 
result: 

( ) ( ) ( )r r rσ=J E  
 
We find that these currents swirl around in the media in a 
solenoidal manner (i.e., ( ) ( )0 and x 0r r∇ ⋅ = ∇ ≠J J ). 

( )tB  

( )r ,tE  
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We call these currents Eddy Currents. 
 
 
 
 
 
 
 
 
 
 
 

 
Eddy currents are problematic in the magnetic cores of 
transformers, generators, and inductors, as they result in 
Ohmic Losses.  These losses in power can be determined from 
Joules Law as: 
 

( ) ( )

( ) [ ]2

r r

r         W

loss
V

V

P dv

dvσ

= ⋅

=

∫∫∫

∫∫∫

E J

E  

where V is the volume of the magnetic core.  The “lost” power is 
of course simply transferred to heat. 
 
It is evident that if conductivity is low (i.e., 0σ ≈ ), the eddy 
currents and their resulting losses will be small.  Ideally, then, 
we seek a magnetic material that has very high permeability 
and very low conductivity. 
 
Oh, it also should be inexpensive! 
 
Finding a material with these three attributes is very difficult! 
 

( )eddy rJ  


